Ethnic differences in N-glucuronidation of nicotine and cotinine.

نویسندگان

  • N L Benowitz
  • E J Perez-Stable
  • I Fong
  • G Modin
  • B Herrera
  • P Jacob
چکیده

We previously reported that the metabolism of cotinine, the proximate metabolite of nicotine, is significantly slower in black than in white cigarette smokers. To understand why the metabolism of nicotine and cotinine might differ between blacks and whites, we studied the pattern of nicotine metabolism in blacks and whites. One hundred eight healthy smokers (51 blacks and 57 whites), of similar age, gender distribution, and smoking history, received an i.v. infusion of deuterium-labeled nicotine and cotinine. The clearance of cotinine, the fractional conversion of nicotine to cotinine, and the metabolic clearance of nicotine to cotinine were significantly lower in blacks than in whites. Blacks excreted significantly less nicotine as nicotine-N-glucuronide and less cotinine as cotinine-N-glucuronide than whites, but there was no difference in the excretion of 3'-hydroxycotinine-O-glucuronide. Nicotine and cotinine glucuronidation appeared to be polymorphic, with evidence of slow and fast N-glucuronide formers among blacks but was unimodal with fast conjugators only among whites. Other findings of note included the demonstration of a significant correlation between the distribution volumes of nicotine and cotinine with lean body mass: there was a smaller distribution volume and a shorter half-life for cotinine in women than in men and a smaller volume of distribution of cotinine in blacks than in whites. We conclude that the metabolism of cotinine is slower in blacks than in whites because of both slower oxidative metabolism of nicotine to cotinine (presumably via cytochrome P-450 2A6) and slower N-glucuronidation. Ethnic differences in the metabolism of other drugs undergoing N-glucuronidation should be studied.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Original Contribution Associations BetweenGenetic Ancestries and Nicotine MetabolismBiomarkers in the Multiethnic Cohort Study

Differences in internal dose of nicotine and tobacco-derived carcinogens among ethnic/racial groups have been observed. In this study, we explicitly examined the relationships between genetic ancestries (genome-wide average) and 19 tobacco-derived biomarkers in smokers from 3 admixed groups in theMultiethnic Cohort Study (1993–present), namely, African ancestry in African Americans (n = 362), A...

متن کامل

The contribution of common genetic variation to nicotine and cotinine glucuronidation in multiple ethnic/racial populations.

BACKGROUND The lung cancer risk of smokers varies by race/ethnicity even after adjustment for smoking. Evaluating the role of genetics in nicotine metabolism is likely important in understanding these differences, as disparities in risk may be related to differences in nicotine dose and metabolism. METHODS We conducted a genome-wide association study in search of common genetic variants that ...

متن کامل

UGT1A and UGT2B genetic variation alters nicotine and nitrosamine glucuronidation in european and african american smokers.

BACKGROUND Identifying sources of variation in the nicotine and nitrosamine metabolic inactivation pathways is important to understanding the relationship between smoking and cancer risk. Numerous UGT1A and UGT2B enzymes are implicated in nicotine and nitrosamine metabolism in vitro; however, little is known about their roles in vivo. METHODS Within UGT1A1, UGT1A4, UGT1A9, UGT2B7, UGT2B10, an...

متن کامل

N-glucuronidation of nicotine and cotinine by human liver microsomes and heterologously expressed UDP-glucuronosyltransferases.

Nicotine is considered the major addictive agent in tobacco. Tobacco users extensively metabolize nicotine to cotinine. Both nicotine and cotinine undergo N-glucuronidation. Human liver microsomes have been shown to catalyze the formation of these N-glucuronides. However, which UDP-glucuronosyltransferases contribute to this catalysis has not been identified. To identify these enzymes, we initi...

متن کامل

Nicotine N-glucuronidation relative to N-oxidation and C-oxidation and UGT2B10 genotype in five ethnic/racial groups.

Nicotine metabolism influences smoking behavior and differences in metabolism probably contribute to ethnic variability in lung cancer risk. We report here on the proportion of nicotine metabolism by cytochrome P450 2A6-catalyzed C-oxidation, UDP-glucuronosyl transferase 2B10 (UGT2B10)-catalyzed N-glucuronidation and flavin monooxygenase 3-catalyzed N-oxidation in five ethnic/racial groups and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of pharmacology and experimental therapeutics

دوره 291 3  شماره 

صفحات  -

تاریخ انتشار 1999